Search results for "Moufang loop"

showing 3 items of 3 documents

Semipredictable dynamical systems

2015

A new class of deterministic dynamical systems, termed semipredictable dynamical systems, is presented. The spatiotemporal evolution of these systems have both predictable and unpredictable traits, as found in natural complex systems. We prove a general result: The dynamics of any deterministic nonlinear cellular automaton (CA) with $p$ possible dynamical states can be decomposed at each instant of time in a superposition of $N$ layers involving $p_{0}$, $p_{1}$,... $p_{N-1}$ dynamical states each, where the $p_{k\in \mathbb{N}}$, $k \in [0, N-1]$ are divisors of $p$. If the divisors coincide with the prime factors of $p$ this decomposition is unique. Conversely, we also prove that $N$ CA w…

Numerical AnalysisDynamical systems theoryCellular Automata and Lattice Gases (nlin.CG)Applied MathematicsComplex systemFOS: Physical sciencesMathematical Physics (math-ph)Nonlinear Sciences - Chaotic Dynamics01 natural sciencesCellular automaton010305 fluids & plasmasCombinatoricsNonlinear systemSuperposition principleModeling and Simulation0103 physical sciencesPrime factorChaotic Dynamics (nlin.CD)Moufang loop010306 general physicsNonlinear Sciences - Cellular Automata and Lattice GasesMathematical PhysicsMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

On nilpotent Moufang loops with central associators

2007

Abstract In this paper, we investigate Moufang p-loops of nilpotency class at least three for p > 3 . The smallest examples have order p 5 and satisfy the following properties: (1) They are of maximal nilpotency class, (2) their associators lie in the center, and (3) they can be constructed using a general form of the semidirect product of a cyclic group and a group of maximal class. We present some results concerning loops with these properties. As an application, we classify proper Moufang loops of order p 5 , p > 3 , and collect information on their multiplication groups.

Discrete mathematicsPure mathematicsSemidirect productAlgebra and Number TheoryLoops of maximal classGroup (mathematics)Moufang loopsMathematics::Rings and AlgebrasLoops of maximal claCyclic groupCenter (group theory)Nilpotent loopsSemidirect product of loopsNilpotent loopNilpotentMathematics::Group TheorySettore MAT/02 - AlgebraOrder (group theory)MultiplicationNilpotent groupMoufang loopMathematics
researchProduct

Steiner Loops of Affine Type

2020

Steiner loops of affine type are associated to arbitrary Steiner triple systems. They behave to elementary abelian 3-groups as arbitrary Steiner Triple Systems behave to affine geometries over GF(3). We investigate algebraic and geometric properties of these loops often in connection to configurations. Steiner loops of affine type, as extensions of normal subloops by factor loops, are studied. We prove that the multiplication group of every Steiner loop of affine type with n elements is contained in the alternating group An and we give conditions for those loops having An as their multiplication groups (and hence for the loops being simple).

Steiner triple systems steiner loops of affine type multiplication groups of loops finite geometries commutative Moufang loop.Settore MAT/03 - Geometria
researchProduct